DELAWARETER

Winter 2001-2002

Chapter Dinner Meetings

March 12, 2002

Dr. Jeffry L. Vaught, Ph.D.,
President of Research and Development at Cephalon
will talk to us about Cephalon drugs. For information: contact Chuck Sutherland: 215-453-9084; skimmer@mail3.enter.net.

December 4, 2001

Bruce Grant, Ph.D.,
Publisher of ePharm5-daily
talked to us about how we can use the Internet for communicating medical and pharmaceutical information. The next Delawareter will include a summary of his talk.

Our Edie

The AMWA office in Rockville sent me a list of AMWA Fellows which I reproduced in the last Delawareter. An AMWA-DVC board member said that did not look right to her, I should check. I asked Rockville again and they insisted the list was right! We went to press, the World Trade Towers were horrifically pulverized and the post office took more than two weeks to deliver your newsletter. At the September dinner meeting, I was still hearing from members who had not received theirs.

Edie Schwager, my favorite member, had received hers. She was waving it at me in the foyer of the Radisson Hotel while Chuck Sutherland was collecting money and giving attendees name tags. Edie told me she was a Fellow and AMWA should have known it. I appropriately blushed and sweated into my jacket and apologized. As a diversion, I pulled the proofs of my book out of my bag to show her. She glanced, no, microglanced, at the book, gave me a look that would wither a rubber plant, and said I spelled “Acknowledgment” wrong.

I spelled it “Acknowledgement”, which, according to my Webster’s is acceptable if you are British or if you are archaic American. That just about describes me, but I will spell it Edie’s way in the next edition. Highlights from Edie’s bio inside. She is our AMWA-DVC living treasure, so listen to her. She knows more than you do.

The Editor
Drug Discovery in the 21st Century

Drug discovery's past, present, and challenges came alive when John J. Baldwin, Ph.D., Chief Science and Technology officer at Pharmacopeia, spoke at AMWA-DVC's September 25 meeting in Essington, PA. Attendees learned interesting facts about drug discovery and heard about Pharmacopeia's vision for the future.

Early therapeutic agents, some of which are still used today, came from plants. But the success rate of natural products is notoriously low, according to Dr. Baldwin, and major pharmaceutical companies are no longer interested in them.

Much of the early drug discovery of synthetic compounds was conducted in Germany. Aspirin, for example, was synthesized there in 1897; today, 10,000 tons of aspirin are made and sales total $350 million each year.

Drug development failures are expensive. Developing a new drug costs $360 to $500 million: 90% of pre-clinical candidates fail before becoming a drug.

Today, pharmaceutical companies face increased pressures. Between 1990 and 1994, the top 10 pharmaceutical companies averaged 0.45 new drugs per year. To maintain a revenue growth rate of 10%, they need to increase productivity 10-fold. Each new drug must have a sales potential of $350 million per year.

Drug development failures are expensive. Developing a new drug costs $360 to $500 million: 90% of pre-clinical candidates fail before becoming a drug.

New technologies such as genomics, rational design, and ultra high-throughput screening will provide some advances in drug discovery. These technologies won't improve understanding of the disease process or assays. They will improve the success rate, however, in selecting one company didn't compete in another's area of expertise.

By 1997, worldwide R&D spending had grown to $42 billion. Just three years later, in 2000, this figure had increased to $52 billion. "It's a high risk game," said Dr. Baldwin.

Today, pharmaceutical companies face increased pressures. Between 1990 and 1994, the top 10 pharmaceutical companies averaged 0.45 new drugs per year. To maintain a revenue growth rate of 10%, they need to increase productivity 10-fold. Each new drug must have a sales potential of $350 million per year.

Drug development failures are expensive. Developing a new drug costs $360 to $500 million: 90% of pre-clinical candidates fail before becoming a drug.

New technologies such as genomics, rational design, and ultra high-throughput screening will provide some advances in drug discovery. These technologies won't improve understanding of the disease process or assays. They will improve the success rate, however, in selecting one company didn't compete in another's area of expertise.

By 1997, worldwide R&D spending had grown to $42 billion. Just three years later, in 2000, this figure had increased to $52 billion. "It's a high risk game," said Dr. Baldwin.

Today, pharmaceutical companies face increased pressures. Between 1990 and 1994, the top 10 pharmaceutical companies averaged 0.45 new drugs per year. To maintain a revenue growth rate of 10%, they need to increase productivity 10-fold. Each new drug must have a sales potential of $350 million per year.

Drug development failures are expensive. Developing a new drug costs $360 to $500 million: 90% of pre-clinical candidates fail before becoming a drug.

New technologies such as genomics, rational design, and ultra high-throughput screening will provide some advances in drug discovery. These technologies won't improve understanding of the disease process or assays. They will improve the success rate, however, in selecting one company didn't compete in another's area of expertise.

By 1997, worldwide R&D spending had grown to $42 billion. Just three years later, in 2000, this figure had increased to $52 billion. "It's a high risk game," said Dr. Baldwin.

Today, pharmaceutical companies face increased pressures. Between 1990 and 1994, the top 10 pharmaceutical companies averaged 0.45 new drugs per year. To maintain a revenue growth rate of 10%, they need to increase productivity 10-fold. Each new drug must have a sales potential of $350 million per year.

Drug development failures are expensive. Developing a new drug costs $360 to $500 million: 90% of pre-clinical candidates fail before becoming a drug.

New technologies such as genomics, rational design, and ultra high-throughput screening will provide some advances in drug discovery. These technologies won't improve understanding of the disease process or assays. They will improve the success rate, however, in selecting one company didn't compete in another's area of expertise.

By 1997, worldwide R&D spending had grown to $42 billion. Just three years later, in 2000, this figure had increased to $52 billion. "It's a high risk game," said Dr. Baldwin.

Today, pharmaceutical companies face increased pressures. Between 1990 and 1994, the top 10 pharmaceutical companies averaged 0.45 new drugs per year. To maintain a revenue growth rate of 10%, they need to increase productivity 10-fold. Each new drug must have a sales potential of $350 million per year.

Drug development failures are expensive. Developing a new drug costs $360 to $500 million: 90% of pre-clinical candidates fail before becoming a drug.

New technologies such as genomics, rational design, and ultra high-throughput screening will provide some advances in drug discovery. These technologies won't improve understanding of the disease process or assays. They will improve the success rate, however, in selecting one company didn't compete in another's area of expertise.